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Abstract

After advanced age, female sex is the major risk factor for Alzheimer’s disease (AD). The bio-

logical mechanisms underlying the increased AD risk in women remain largely undetermined.

Preclinical studies identified the perimenopause to menopause transition, a neuroendocrine

transition state unique to the female, as a sex-specific risk factor for AD. In animals, estro-

genic regulation of cerebral glucose metabolism (CMRglc) falters during perimenopause.

This is evident in glucose hypometabolism and decline in mitochondrial efficiency which is

sustained thereafter. This study bridges basic to clinical science to characterize brain bioen-

ergetics in a cohort of forty-three, 40–60 year-old clinically and cognitively normal women at

different endocrine transition stages including premenopause (controls, CNT, n = 15), peri-

menopause (PERI, n = 14) and postmenopause (MENO, n = 14). All participants received

clinical, laboratory and neuropsychological examinations, 18F-fluoro-deoxyglucose (FDG)-

Positron Emission Tomography (PET) FDG-PET scans to estimate CMRglc, and platelet

mitochondrial cytochrome oxidase (COX) activity measures. Statistical parametric mapping

and multiple regression models were used to examine clinical, CMRglc and COX data across

groups. As expected, the MENO group was older than PERI and controls. Groups were oth-

erwise comparable for clinical measures and distribution of APOE4 genotype. Both MENO

and PERI groups exhibited reduced CMRglc in AD-vulnerable regions which was correlated

with decline in mitochondrial COX activity compared to CNT (p’s<0.001). A gradient in bio-

marker abnormalities was most pronounced in MENO, intermediate in PERI, and lowest in

CNT (p<0.001). Biomarkers correlated with immediate and delayed memory scores (Pear-

son’s 0.26�r�0.32, p�0.05). These findings validate earlier preclinical findings and indicate

emergence of bioenergetic deficits in perimenopausal and postmenopausal women,
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suggesting that the optimal window of opportunity for therapeutic intervention in women is

early in the endocrine aging process.

Introduction

After advanced age, female sex is the major risk factor for developing late-onset Alzheimer’s

disease (AD) [1]. While AD is not unique to the female, women constitute the majority of peo-

ple with the disease, accounting for two-thirds of the 5.5 million Americans living with AD

dementia in 2017 [2]. AD risk is greater in women even after accounting for their greater lon-

gevity relative to men [3].

Despite well-established vulnerability, the biological mechanisms underlying the increased

risk of AD in women remain largely unknown. However, preclinical evidence implicates a

shift in the bioenergetic system of the brain during the perimenopause to menopause transition
which could serve as an early initiating mechanism for increased AD risk in the female brain

[4].

The perimenopause to menopause transition is a midlife neuroendocrine transition state

unique to the female that occurs on the background of an aging biology [4]. While the outcome

of this transition is reproductive senescence, the related symptoms are largely neurological in

nature. These include disruption of estrogen-regulated systems such as thermoregulation, sleep,

circadian rhythms and sensory processing, as well as depression and impairment in multiple

cognitive domains [4].

Chronologically, age of menopause maps onto the time course for initiation of the prodro-
mal phase of AD, which typically begins 15–20 years before clinical symptoms emerge [5].

Menopausal changes therefore coincide with the timespan between average age of menopause,

in the mid-50s, and average age of AD diagnosis, in the mid-seventies.

From a mechanistic perspective, estrogen dysregulation during perimenopause significantly

affects brain bioenergetics [4]. The brain is dependent upon glucose as the principal metabolic

fuel to generate ATP–a system that is partially regulated by estrogen. During perimenopause,

estrogenic regulation of cerebral glucose metabolism (CMRglc) falters, inducing a hypometa-

bolic state which is accompanied by deposition of amyloid-beta (Aβ, a hallmark of AD pathol-

ogy), decreased mitochondrial function, and decline in synaptic plasticity [6–8].

Synaptic transmission consumes 75% of ATP generated in brain with cognitive function

accounting for a large proportion of the required ATP [9]. Estrogen promotes aerobic glycoly-

sis coupled to mitochondrial oxidative phosphorylation for generation of ATP [10]. Preclinical

evidence indicated that the loss of brain estrogen, either by surgical removal of the ovaries or

through natural endocrine aging, induces decline in glucose metabolism and mitochondrial

function including cytochrome oxidase activity (COX, Complex IV of mitochondria electron

transport chain, ETC) and ATP generation (for a recent review, see [10]).

Based on these findings as well as substantial evidence for altered brain bioenergetic early

in the course of AD [11], we investigated brain CMRglc and mitochondrial COX activity, a

rate limiting step in ATP production, in women across endocrine aging states.

Positron emission tomography (PET) studies with 18F-fluorodeoxy-2-glucose (FDG) as the

tracer has consistently documented that reduction in brain CMRglc develop years, if not decades,

prior to onset of clinical symptoms [12–16], correlate with AD progression [17], and are more

severe in women than in men [18]. Glucose dysmetabolism in AD occurs in conjunction with

mitochondrial dysfunction, particularly reduced COX activity in brain tissue, fibroblasts and
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platelets in humans, and is extensively documented in preclinical models of prodromal AD [11,

19–21].

Herein, we present a translational neuroimaging study that bridges basic to clinical science

to characterize changes in 18F-FDG PET CMRglc and mitochondrial COX activity in a cohort

of clinically and cognitively normal women at different endocrine transition stages (premeno-

pause vs. perimenopause vs. menopause).

Methods

Participants

Among a larger pool of clinically and cognitively normal individuals participating in brain

imaging studies at New York University (NYU) School of Medicine/Weill Cornell Medical

College, this study focused on a sub-set of 62 female participants of age 40–60 years who com-

pleted clinical, labs, neuropsychological examinations, FDG-PET scans and a blood draw to

measure mitochondrial COX activity between 2010–2015. Subjects were derived from multiple

community sources, including individuals interested in research participation, family mem-

bers and caregivers of impaired patients.

The study protocol has been previously published [15, 22]. Briefly, all subjects underwent

thorough physical examinations with detailed medical histories. Individuals with medical con-

ditions or history of conditions that may affect brain structure or function (e.g. stroke, unman-

aged diabetes, depression, head trauma, any neurodegenerative diseases, hydrocephalus,

intracranial mass, and infarcts on MRI), and those taking psychoactive medications were

excluded. In order to be included in this study, subjects had to be 40–60 years of age, with

education�12 y, Clinical Dementia Rating (CDR) = 0, Global Deterioration Scale (GDS)�2,

Mini Mental State Examination (MMSE)�27, Hamilton depression scale<16, Modified

Hachinski Ischemia Scale<4 and normal cognitive test performance for age and education

[15, 22].

The neuropsychological battery of tests was constructed as previously described [23]. Four

cognitive domains were assessed from the following tests: memory (Immediate and delayed

recall of a paragraph [PARI, PARD], and immediate and delayed recall of paired associates

[PRDI, PRDD]), executive function (Wechsler Adult Intelligence Scale Digit Symbol Substitu-

tion [DSST]), language (Object Naming Test [ONT] and WAIS vocabulary), and visuospatial

performance (Block Design test [DESN]).

DNA was obtained from venous blood samples to determine APOE genotypes using stan-

dard quantitative polymerase chain reaction (PCR) [15, 22]. Individuals with one or two

APOE ε4 alleles were categorized as APOE ε4 carriers (APOE4+) and compared to non-carri-

ers (APOE4-).

Standard protocols approval, registration and patient consents

This study received approval from NYU School of Medicine and Weill Cornell Medical Col-

lege institutional review boards. Written informed consent was obtained from all patients par-

ticipating in the study.

Determination of menopausal status

Only participants with detailed medical records of menopausal status were included in this

study. Determination of menopausal status was based on clinical judgment, medical records

and detection of cluster symptoms according to the Stages of Reproductive Aging Workshop

(STRAW) criteria [24]. Premenopausal women have regular menstrual cycles that are <7 days
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variability in cycle length. Perimenopausal women have irregular menstrual cycles, with varia-

tion in cycle length>7 days. Postmenopausal women have had no menstrual cycles for�12

months. Detection of cluster symptoms was based on presence of sweatiness/hot flashes, mood

swings, insomnia, change in appetite, loss of libido, cognitive problems/concentration and

short-term memory complaints [24]. Based on these assessments, participants were classified

into 3 groups: asymptomatic perimenopausal women by age (e.g., premenopausal controls,

CNT); symptomatic perimenopausal (PERI); and postmenopausal women (MENO).

COX analysis

After an overnight fast, 50 ml of blood were collected in tubes containing acid-citrate-dextrose.

Blood samples were obtained at NYU and sent overnight to the Mitochondrial Genomics and

Metabolism Core of the University of Kansas Alzheimer’s Disease Center. Upon receipt, plate-

lets were isolated by centrifugation and enriched mitochondrial fractions were prepared using

previously described methods [25]. The protein concentrations of the enriched mitochondrial

fractions were measured using a DC protein assay kit (Bio Rad, Hercules, CA).

Cytochrome c oxidase Vmax activity (COX, Complex IV, sec-1/mg) was determined as a

pseudo first order-rate constant by measuring the oxidation of reduced cytochrome c at 550

nm. In addition to referencing COX Vmax activity to total protein, to correct for potential

inter-sample differences in mitochondrial mass the COX activity for each sample was also ref-

erenced to its corresponding citrate synthase (CS) activity. CS activity is reportedly comparable

between NL and AD patients, with variations as little as 0.5–2%, and does not show age effects

[26, 27]. CS Vmax activity (nmol/min/mg) was determined by spectrophotometrically follow-

ing the formation of 5-thio-2-nitrobenzoate (412 nm) following the addition of 100 μM oxalo-

acetate at 30˚C.

Brain FDG-PET imaging

All subjects received FDG-PET scans at Weill Cornell Medical College following standardized

procedures [15, 28]. Briefly, after an overnight fast, subjects were positioned in the scanner 35

minutes post injection of 5 mCi of 18F-FDG, and scanned for 20 min in 3D-mode on an LS

Discovery or BioGraph PET/CT scanner. All images were corrected for attenuation, scatter

and decay, and smoothed for uniform resolution [29].

For each subject, summed PET images corresponding to 40–60 min of FDG data were core-

gistered to the corresponding MRI using the Normalized Mutual Information routine of Sta-

tistical Parametric Mapping’12 (SPM’12), spatially normalized to a standard MRI template

using subject-specific transformation matrixes obtained from MRI, and smoothed with a

10mm FWHM filter [30]. FDG uptake in the pons was used to normalize for inter-subject vari-

ability [31].

Statistical analysis

SPSS v.22 (SPSS Inc.) and SPM’12 were used for data analysis.

Differences in clinical, demographical, and COX measures across groups were examined

with χ2 tests, and the General Linear model (GLM) with post-hoc Tukey tests.

The total-protein COX Vmax was examined as absolute values and after adjustment for CS,

which was examined both as a covariate and as a denominator (COX/CS).

For SPM PET analysis, a full factorial model with post-hoc t-contrasts was used to test for

regional differences in FDG measures between groups, accounting for pons metabolism. Lin-

ear regressions were used to test for voxel-wise associations between COX activity and CMRglc
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measures across all subjects and by clinical group. Age, education, and APOE genotype were

examined as covariates.

As we had specific a priori hypotheses on which brain regions would show possible

FDG-PET effects, results were examined at p<0.001 after small-volume correction (SVC)

within the search volume defined by a masking image created from a set of predefined bilateral

AD-related regions of interest including posterior cingulate cortex, precuneus, parietal, tem-

poral and frontal cortex [15, 22, 32]. The gray matter threshold was set at 0.8 and only clusters

exceeding an extent threshold of 30 voxels were considered significant [32].

Anatomical location of brain regions showing significant effects was described using Talair-

ach and Tournoux coordinates. CMRglc measures were extracted from clusters of voxels

showing significant effects for further analyses.

Linear regressions and Pearson’s r determination coefficients were used to evaluate associa-

tions between CMRglc, COX, clinical and neuropsychological measures. An interaction term

was included in the model to test for slope differences across groups.

Stepwise forward logistic regressions and ROC curves were used to examine COX and

CMRglc as predictors of clinical group, and to calculate associated relative risk (RR) and 95%

confidence intervals (C.I.). Results were considered significant at p<0.05.

Results

Subjects

Of the sixty-two 40–60 y/o women who fulfilled our inclusion criteria, 10 had incomplete

reports of menopausal status and another 9 were excluded due to medical reasons including

hysterectomy (3 cases), thyroid disease (3 cases), history of cancer (1 case) and medications

(HRT, 2 cases). The remaining 43 women included 15 CNT, 14 PERI, and 14 MENO subjects,

and were examined in this study.

Subjects’ characteristics are found in Table 1.

As expected, the MENO group was older than CNT and PERI groups (p<0.05). Groups

were otherwise comparable for demographical measures, frequency of a family history of AD,

and distribution of APOE4 genotype (Table 1).

None of the participants were diabetic or met criteria for obesity as defined by a Body-Mass

index (BMI)>30 kg/m2. The MENO group had a higher total cholesterol level compared to

CNT, and reduced plasma folate compared to both CNT and PERI groups (p’s<0.03).

On neuropsychological testing, as compared to the CNT group, the MENO group showed

lower memory scores on immediate and delayed recall (PRDI, PARD) tests (p’s<0.03), and a

trend towards lower scores on delayed recall of paired associates (PRDD, p = 0.08) (Table 1).

The MENO group also exhibited a trend towards lower PARD scores compared to the PERI

group (p = 0.08).

Mitochondrial COX activity

COX measures by clinical group are found in Table 2.

Results of these analyses, correcting for age and citrate synthase activity (CS), indicated that

the total protein-referenced COX Vmax activity, as compared to CNT, was reduced by 30% in

the PERI group (p = 0.04) and by 57% in the MENO group (p = 0.003). There was a trend

towards reduced COX Vmax in MENO vs. PERI (39%, p = 0.09), yielding a gradient effect

such as: CNT>PERI>MENO (p = 0.01).

When education and APOE were included as covariates in the model, there were no signifi-

cant associations between these variables and COX activity, leaving group differences substan-

tially unchanged (p<0.05, Table 2).
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FDG-PET glucose metabolism

Controlling for age and pons activity, CMRglc differences across groups were observed in AD-

vulnerable posterior cingulate cortex/precuneus (PCC), frontal, parietal, medial and lateral

temporal cortex, bilaterally (p<0.001, Fig 1).

On post-hoc analysis, the MENO group exhibited CMRglc reductions in all the above

regions as compared to CNT (Fig 1 and S1 Table). The MENO group also showed CMRglc

reductions in medial and lateral temporal cortex, bilaterally, and in PCC and middle frontal

cortex of the left hemisphere as compared to the PERI group (p<0.001, Fig 1 and S1 Table).

The PERI group exhibited CMRglc reductions in temporal cortex, bilaterally, as well as in the

Table 1. Demographic and clinical characteristics by clinical group.

Premenopause Perimenopause Postmenopause

N 15 14 14

Age, y, mean (SD), range 47(5), 40–55 50(6), 40–56 57(2), 52–60

Education, y, mean (SD) 16(2) 16(2) 16(2)

Family history of LOAD, % positive 66% 71% 79%

APOE ε4 carriers, % positive 46% 43% 36%

Ethnicity (%White) 80% 71% 86%

Subjective complaints (%) 80% 79% 100%

Lab findings

Hypertension, % positive 13% 29% 14%

Body Mass Index (BMI) 25(6) 24(6) 24(4)

Hip to waist ratio [unitless] 1.0(0.4) 1.0(0.4) 1.1(0.1)

Systolic Blood pressure (mm/Hg) 113(18) 122(18) 118(9)

Diastolic blood pressure (mm/Hg) 70(13) 73(13) 69(8)

Fasting glucose (mg/dl) 66(24) 73(13) 76(14)

QUICKI score [unitless] 0.17(0.02) 0.18(0.02) 0.18(0.02)

Cholesterol (mg/dl) 189(63) 203(32) 229(33)a

HDL 66(27) 69(14) 82(22)

LDL 108(39) 118(28) 131(27)

Triglycerides (mg/dl) 72(44) 80(21) 79(35)

Homocysteine (micromol/l) 5.5(6.6) 9.1(5.7) 5.1(9.4)

Plasma vitamin B12 (ng/l) 419(268) 631(294) 657(507)

Plasma folate (ng/ml) 13(10) 15(4) 5(13) a,b

Neuropsychological tests

Mini Mental State Exam 29(2) 29(1) 29(1)

Digit symbol substitution 68(8) 67(12) 63(9)

Paragraph immediate recall 9(3) 7(2) 5(5)

Paragraph delayed recall 11(3) 9(3) 7(4)a

Paired associates Immediate recall 8(2) 6(3) 3(4)a

Paired associates delayed recall 8(3) 7(3) 5(5)

Designs 8(2) 8(2) 5(4)

Object naming 57(5) 58(2) 64(7)

WAIS-vocabulary 68(7) 65(8) 63(8)

Values are means (SD) unless otherwise specified. Abbreviations: CNT = asymptomatic perimenopause by age; PERI = symptomatic perimenopause by

age; MENO = postmenopause.
a MENO different from CNT
b MENO different from PERI, p<0.05

https://doi.org/10.1371/journal.pone.0185926.t001
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inferior parietal cortex of the right hemisphere and PCC of the left hemisphere as compared to

CNT (p<0.001, Fig 1 and S1 Table). In CNT, no brain regions exhibited reduced CMRglc as

compared to MENO or PERI groups.

As such, a gradient in CMRglc was evident in that: CNT>PERI>MENO (p<0.001, Fig 1).

On average, age and pons-adjusted CMRglc in AD-regions was reduced by 19% in MENO vs,

CNT, by 13% in MENO vs. PERI, and 8% in PERI vs. CNT (Table 2).

Results remained substantially unchanged including education and APOE as covariates

(p’s<0.001).

Associations between COX activity and CMRglc

Correcting for the same confounds as above, across all participants, positive associations

between COX activity and CMRglc were observed in PCC, frontal and temporal cortices

(p<0.001, Fig 2 and S2 Table).

The higher the COX activity, the higher the CMRglc in these regions, with FDG SUVR

increasing by on average βunstandardized = 0.004 units (SE = 0.001) for every unit increase in

COX Vmax. No brain regions exhibited a negative correlation between COX and CMRglc.

Similar association patterns were observed within each group (Fig 2 and S2 Table). Addi-

tionally, there was a significant interaction with endocrine group, with MENO and PERI

groups exhibiting a steeper regression slope in frontal cortex CMRglc for COX compared to

CNT (pinteraction<0.05, Fig 2).

Metabolic markers were positively associated with memory scores (p<0.05). Specifically, both

CMRglc and COX activity correlated with delayed memory scores (CMRglc: Pearson’s r = 0.26,

βunstd = 2.1, SE = 1.6, p = 0.05; COX Vmax: r = 0.31, βunstd = 7.6, SE = 3.9, p = 0.04), and COX

also correlated with immediate memory scores (r = 0.32, βunstd = 9.3, SE = 4.2, p = 0.03).

Prediction of menopausal status by biomarkers

To address whether bioenergetic measures are indicative of endocrine aging state, COX activ-

ity and or CMRglc were examined as predictors of endocrine state. Results are summarized in

Table 3.

Table 2. Bioenergetic measures by transition state.

Premenopause (n = 15) Perimenopause (n = 14) Postmenopause (n = 14)

Mitochondrial measures

CS (nmol/min/mg) 142 (72) 157 (40) 145 (50)

COX (sec-1/mg) 41.5 (23.6) 36.4 (27.7) 30.9 (24.4)

Adjusted by age and CS 50.5 (15.9) 35.5 (16.6)a 21.5 (15.6)b

Adjusted by APOE 48.6 (16.0) 36.1 (16.7)a 23.8 (15.6)a

COX/CS (ratio, unitless) 0.30 (0.12) 0.23 (0.15)a 0.20 (0.15)a

Adjusted by age 0.34 (0.09) 0.24 (0.09)a 0.15 (0.10)b

Adjusted by age and APOE 0.32 (0.09) 0.24 (0.09) 0.16 (0.10)a

CMRglc measures

AD-regions SUVR (unitless) 1.86 (0.12) 1.77 (0.18) 1.59 (0.09)b,c

Adjusted by age 1.91 (0.09) 1.76 (0.10) 1.54 (0.08) b,c

Adjusted by age and APOE 1.88 (0.09) 1.78 (0.10) 1.56 (0.09) b,c

Values are means (SD). Abbreviations: CS = citrate synthase, COX = cytochrome oxidase, SUVR = standardized FDG uptake value ratio to pons activity
aDifferent from CNT, p<0.05
bDifferent from CNT, p<0.01
cDifferent from PERI, p<0.01.

https://doi.org/10.1371/journal.pone.0185926.t002
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MENO vs CNT. Both CMRglc (age and pons-adjusted) and COX activity (age and CS-

adjusted) discriminated MENO from CNT, yielding 96% accuracy (Chi Sq(1) = 28.5, relative

risk, RR = 14, 95% C.I. 2.1–92.6, p<0.001) and 79% accuracy (Chi Sq(1) = 7.1, RR = 5.2, 95% C.

I. 1.4–19.8, p = 0.008), respectively. On stepwise forward analysis, adding COX to CMRglc

measures in the model significantly increased the accuracy of CMRglc alone (pincrement = 0.01),

for a combined 100% accuracy (ChiSq(2) = 29.1, RR = 28.9, 95% C.I. 1.9–442.3, p<0.001).

MENO vs PERI. CMRglc discriminated MENO from PERI with 72% accuracy (Chi Sq(1) =

20.5, relative risk, RR = 2.0, 95% C.I. 1.1–3.7, p = 0.002). COX activity was not a significant

predictor of group membership, yielding 67% accuracy (p = 0.33, n.s.). Adding COX to

CMRglc in the model did not increase the discrimination accuracy over CMRglc alone.

PERI vs CNT. Both CMRglc and COX showed non-significant trends towards discriminat-

ing PERI from CNT, yielding 74% and 67% accuracy, respectively (p�0.11). Adding COX and

CMRglc in the model did not increase the discrimination accuracy over either measure alone.

Discussion

As compared to premenopausal women, perimenopausal and postmenopausal women exhib-

ited brain hypometabolism in the same brain regions as clinical AD patients, as well as corre-

lated reductions in mitochondrial COX activity. A gradient effect was observed so that

Fig 1. FDG-PET brain glucose metabolism as a function of endocrine aging. Top of figure: Statistical parametric maps (SPMs) display

reductions in 18F-fluoro-2-deoxyglucose (FDG) uptake in (A) postmenopausal (MENO) vs. premenopausal women (CNT); (B) perimenopausal (PERI)

vs. premenopausal women; and (C) postmenopausal vs. perimenopauseal women. SPMs are represented on color-coded scales (1<z<3; where z>2

correspond to p<0.001) and displayed onto a standardized MRI. Corresponding coordinates and anatomical areas can be found in S1 Table. Bottom

of figure: CMRglc extracted from AD-regions by endocrine group. Values are pons-adjusted mean values, SEM; *p<0.01, **p<0.001. Abbreviations:

CNT = premenopausal women; PERI = perimenopausal women; MENO = postmenopausal women, SUVR = standardized uptake value ratios

(unitless).

https://doi.org/10.1371/journal.pone.0185926.g001
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Fig 2. Associations between mitochondrial COX activity and FDG-PET brain glucose metabolism. Top of figure: Statistical parametric

maps (SPMs) display positive associations between CMRglc and COX in (A) all subjects, B) postmenopausal women, C) perimenopausal women,

and D) premenopausal women. SPMs are represented on color-coded scales (1<z<3; where z>2 correspond to p<0.001) and displayed onto a

standardized MRI. Corresponding coordinates and anatomical areas can be found in S2 Table. Bottom of figure: Correlations between CMRglc in

AD-regions and mitochondrial COX activity by endocrine group. CMRglc measures are age and pons-adjusted values; COX Vmax are age- and
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bioenergetic abnormalities were most pronounced in postmenopausal, intermediate in peri-

menopausal, and lowest in premenopausal women. Results were independent of age, educa-

tion, and APOE genotype.

Reduced FDG-PET CMRglc in posterior cingulate, parieto-temporal and frontal cortices is

a well-established finding in patients with AD and with mild cognitive impairment (MCI),

often an AD prodrome [33]. Further, PET studies in yet asymptomatic individuals demon-

strate that CMRglc reductions in these key brain regions for AD precede and correlate with

future cognitive decline and dementia [12–14]. Likewise, multiple studies report reduced COX

activity in platelet mitochondria of MCI and AD patients, as well as of cognitively normal indi-

viduals at increased genetic risk of AD [25, 34].

Overall, our biomarker findings are indicative of a progressively increased risk of an AD

endophenotype in women who undergo the perimenopause to menopause transition, and sug-

gest that endocrine aging outweighs the effects of chronological aging in the female’s brain sev-

eral years, if not decades, before possible clinical symptoms emerge.

These findings are particularly relevant given our current understanding of AD as a pro-

gressive disorder characterized by an extended preclinical phase during which the disease is

underway but hasn’t led to recognizable clinical or cognitive symptoms [5]. Given the known

relationship between altered brain bioenergetics and onset of AD symptoms, our data indicate

that sex-specific hormonal stages such as the perimenopause and postmenopause may at least

in part account for the increased AD risk observed in women.

The question of where bioenergetic dysfunction sits in the pathogenesis of late-onset AD is

an area of active debate. According to the amyloid cascade hypothesis, oxidative stress arises

downstream of Aß dysmetabolism, particularly in the rare, early-onset familial AD cases that

associate with autosomal dominant genetic mutations[35].

It is possible that our findings of altered bioenergetics in aging women may depend on

ongoing Aß deposition. Cell culture experiments and studies of transgenic mice expressing

mutant human amyloid-precursor protein (APP) indeed show COX inhibition or altered

COX gene expression[20]. Brain imaging studies indicate that amyloid deposition predates

hypometabolism in early-onset familial AD cases [17, 36], although results are less consistent

in the most common late-onset form of AD [37].

CS-adjusted residuals. All correlations p’s<0.001 except CNT p<0.05. Abbreviations: CNT = premenopausal women; PERI = perimenopausal

women; MENO = postmenopausal women.

https://doi.org/10.1371/journal.pone.0185926.g002

Table 3. Group separation as predicted by bioenergetic measures.

% Sensitivity % Specificity % Accuracy P Relative Risk 95% C.I.

Menopausal vs Premenopausal women

COX (cutoff = 33.8 sec-1/mg) 64 87 79 0.008 5.2 1.4–19.8

CMRglc (cutoff = 2.09 SUVR) 100 93 96 <0.001 14.0 2.1–92.6

Combined CMRglc and COX 100 100 100 <0.001 28.9 1.9–442.3

Perimenopausal vs Premenopausal women

COX (cutoff = 36.02 sec-1/mg) 50 80 66 0.11 2.5 0.8–7.8

FDG SUVR (cutoff = 1.77 SUVR) 85 64 74 0.09 2.4 1.1–5.0

Combined CMRglc and COX n.s.

Menopausal vs Perimenopausal women

COX (cutoff = 33.7 sec-1/mg) 69 64 67 n.s. 1.9 0.9–4.2

FDG SUVR (cutoff = 1.68 SUVR) 92 54 72 0.002 2.0 1.1–3.7

Combined CMRglc and COX n.s.

https://doi.org/10.1371/journal.pone.0185926.t003
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Alternatively, reduced metabolic activity in perimenopausal and postmenopausal women

could potentially arise as a consequence of a bioenergetic crisis in brain during the perimeno-

pause [4]. Preclinical studies indicate that during perimenopause, when estrogen in brain

plummets, the systems required for estrogen activation of CMRglc and suppression of the

ketogenic pathway are disassembled [38]. Following perimenopause, a response to decline in

CMRglc is induction of an adaptive starvation reaction to increase fatty acid metabolism for

the generation and utilization of ketone bodies by mitochondria as an alternative fuel [4, 38–

41]. Hypometabolism, reduced mitochondrial function and subsequent oxidative damage are

known to promote accumulation of Aß pathology and neuronal dysfunction [42], therefore

increasing risk of developing AD later in life.

Our biomarker findings in humans support the mechanistic pathway from animal studies

demonstrating that perimenopausal and postmenopausal stages are associated with an ener-

getically compromised brain in women, as reflected in brain hypometabolism and associated

reduction in mitochondrial function. Blood platelets are a peripheral, non-degenerating tissue

that should not be affected by CNS pathology [11, 43, 44]. This suggests that decreased bioen-

ergetics during menopause is not simply a secondary consequence of neurodegeneration but

may instead represent a systemic deficit at least in some women. As mitochondria are essential

sites for steroid hormone biosynthesis[45], more studies are needed to address the possibility

that mitochondrial dysfunction is an upstream event in the menopausal estrogen drop leading

to altered brain bioenergetics. As amyloid imaging was not available for many of our subjects,

future studies are needed to determine whether amyloid pathology influences the associations

between neuroendocrine transitions, brain hypometabolism, declines in COX activity, and

cognition.

Since this is the first study demonstrating perimenopausal and postmenopausal effects on

bioenergetic markers, several questions remain to be answered.

First, our cross-sectional results do not allow for determination of causality or temporal

relationships between biomarkers and clinical status, nor do they offer information on future

amyloid deposition and conversion to AD. In our study, metabolic markers were associated

with memory performance, especially on delayed recall tests known to be sensitive to estrogen

declines in women [46], though the associations were modest. Other studies with larger sam-

ples and longitudinal follow-ups are warranted to determine whether the bioenergetic abnor-

malities observed in perimenopausal and postmenopausal women are predictive of cognitive

decline and dementia.

Although MRS imaging can be used to measure mitochondrial activity in brain, there are

no techniques that enable examination of COX activity, specifically. As such, it remains to be

established whether the degree of the observed platelet mitochondria COX activity reductions

correlates with a corresponding reduction in brain mitochondria COX activity. Post-mortem

studies showed significant correlations between brain histology and in vivo blood platelet COX

measurements in AD and control subjects[47]. We offer that the platelet COX defect would

underestimate the brain COX defect, as neurons are more easily affected by oxidative damage

than other tissues and their long life facilitates an accumulation of somatic mtDNA modifica-

tions [11]. If this assumption is correct, then persons with low platelet mitochondria COX

activity would have less COX reserve in brain, and would therefore be more likely over time to

reach a point of bioenergetic compromise. Present findings of positive correlations between

peripheral COX Vmax and CMRglc in brain regions known to be vulnerable to oxidative stress

and AD support this hypothesis. Other measures of mitochondrial function, such as metabolo-

mic studies in blood and/or CSF, are of interest as they would allow measurement of lactate,

pyruvate, and related metabolites in the perimenopause to menopause transition. Likewise,
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novel PET tracers for mitochondrial activity are currently being tested in animals, including

primates, for possible application in humans[48].

Present findings were independent of APOE genotype, a well-known genetic risk factor for

late-onset AD [49] which associates with increased risk of AD in women more than in men [1,

50]. Future studies with larger samples are needed to specifically examine the interactions

between endocrine aging and APOE4 status on bioenergetics as well as other AD-biomarkers.

Our determination of menopausal state in the absence of hormonal confirmation is vulner-

able to error. Our determination of reproductive stage was based on self-report, clinical judg-

ment, and established diagnostic criteria known to have good agreement with clinical and lab

findings [24], which reduce potential for misclassification. While we consider it more likely

that the changes in menstrual cycle frequency reported by our participants reflect their actual

menopausal status, because of the synchronous timing of medical assessments and brain imag-

ing exams, our menopausal group may have included subjects still in perimenopause. Like-

wise, our asymptomatic controls may have included subjects undergoing perimenopausal

changes. This would, however, conservatively reduce power in detecting differences between

groups. Our findings of gradual increases in biomarker abnormalities in perimenopausal and

postmenopausal subjects vs. premenopausal controls are consistent with preclinical and

neuropsychological indicators of change in cognitive function [51–53], and provide support

that that our group assignment criteria were likely correct. Finally, age at surgical menopause

was found to influence cognitive decline and Alzheimer’s amyloid pathology in a large cohort

of older women[54]. We did not include any participants with surgically-induced menopause.

Prospective studies are warranted to provide accurate determination of age at menopause in

naturally-occurring menopausal women, and test its associations with FDG and COX activity.

None of the postmenopausal women included in this study were on hormonal replacement

therapy (HRT). Clinical trials have shown that HRT is effective at preserving CMRglc in AD-

regions, especially if initiated prior to menopause [55, 56] whereas it can be deleterious when

initiated after menopause [57, 58] or in Type 2 diabetic women [55, 59, 60]. Our biomarker

results support further investigation of the potential efficacy of estrogen-based therapies in

preventing decline in brain bioenergetic capacity in women at the perimenopausal stage.

We caution that present results were found in a small cohort of carefully screened patients,

mostly representative of the New York area. Results may differ in populations including

women with higher BMI, lower education levels, or increased risk for metabolic syndrome at

earlier age. Replication of these preliminary findings in community-based populations with

more diversified socio-economic and medical status, as well as with other biomarkers of AD, is

warranted and clinical application is not yet justified.
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mum significance at p<0.001, corrected for the search volume. Only contrasts yielding signifi-

cant results are reported. FDG measures are age-adjusted cortical-to-pons standardized uptake

volume ratios.
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and Tournoux. †Z values at the peak of maximum significance at p<0.001, corrected for the

search volume. Only contrasts yielding significant results are reported. FDG measures are age-
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